Frequency-stabilised Laser Reference System for Trace-gas Sensing Applications from Space

نویسندگان

  • Renaud Matthey
  • Christoph Affolderbach
  • Gaetano Mileti
  • Stéphane Schilt
  • Daniela Werner
  • Sang-Hoon Chin
  • Laura Abrardi
  • Luc Thévenaz
چکیده

A four-wavelength low-power continuous-wave frequency laser reference system has been realised in the 935.4-nm range for water vapour differential absorption lidar (DIAL) applications. The system is built around laboratory extended-cavity and DFB diode lasers. Three lasers are directly locked to three water vapour absorption lines of different strength, whereas the wavelength of the fourth laser lies out of any absorption line (offline). On-line stabilisation is performed by wavelength modulation spectroscopy technique, while precise offline stabilisation is realised by an offset locking at 18.8 GHz. Offset frequency larger than 320 GHz has also been demonstrated at 1.55 μm, based on an all-fibre optical frequency comb. First steps towards the use of a photonic crystal fibre as ultra compact reference cell with long optical pathlength were realised. The developed techniques for direct and offset-lock laser stabilisation can also be applied to other gases and wavelengths, provided the required optical components are available for the laser wavelength considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All‐fiber versatile laser frequency reference at 2 μm for CO2 space‐borne lidar applications

Sensing atmospheric gas traces is crucial for climate monitoring and to predict the importance of global climate changes. Among the various atmospheric constituents, carbon dioxide (CO2), methane (CH4) and water vapor (H2O-v), the most prominent greenhouse gasses, have a major impact on climate. Advanced monitoring techniques are necessary to measure these gas species on a global scale all arou...

متن کامل

Novel diode laser-based sensors for gas sensing applications.

The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, a...

متن کامل

Use of (130)Te(2) for frequency referencing and active stabilisation of a violet extended cavity diode laser.

This paper reports on the use of (130)Te(2) absorption lines in active laser-locking, and in frequency referencing, of the emission of a violet extended cavity diode laser with a wavelength of around 410 nm. We note the existence of closely spaced tellurium absorption lines, suitable for referencing purposes in gas sensing applications, at wavelengths below the lower limit (417 nm) of the spect...

متن کامل

Laser frequency stabilisation via quasi-monolithic, unequal arm-length Mach-Zehnder interferometer with balanced DC readout

Low frequency high precision laser interferometry is subject to excess laser frequency noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This is crucial to achieve picometer level sensitivities in the 0.1mHz to 1Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length m...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006